CAPA Online Education Program Presentation July 7th, 2024

Chinese American Pathologists Association: Excellence through Education, Professionalism and Connection

Molecular Hematopathology Recent Updates and Practice Pearls

Linsheng Zhang, MD, PhD Associate Professor of Pathology Director of Molecular Genetic Pathology Fellowship Emory University School of Medicine

Disclosure

- I have no commercial conflict of interest to disclose.
- Most molecular genetic tests discussed in this presentation are not FDA-approved or cleared. You are responsible for investigating the test performances and related policies before considering them as clinical diagnostic tests.
- Some images/figures in this presentation are copyrighted; they are used here for educational purposes only. If you want to use them from my presentation for other purposes, please obtain copyright clearance from the original publisher.

Objectives

- 1. Introduce the emerging molecular genetic methods applicable to hematopathology in clinical laboratories.
- 2. Analyze the application of mutation profiling in the diagnosis of MDS and the detection of MRD in AML.
- 3. Evaluate the clinical relevance and potential limitations of clonality testing for lymphoid neoplasms.
- 4. Discuss the recent advancements in mutation profiling of lymphoid neoplasms.

New Molecular Genetic Methods Coming to the Clinical Labs

ICC Classification of AML requires blast percentage

Acute promyelocytic leukemia (APL) with $t(15;17)(q24.1;q21.2)/PML::RARA \ge 10\%$ APL with other *RARA* rearrangements^{*} \geq 10% AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 \geq 10% AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 \ge 10% AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A ≥ 10% AML with other *KMT2A* rearrangements^{\dagger} \geq 10% AML with t(6;9)(p22.3;q34.1)/DEK::NUP214 ≥ 10% AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2; $MECOM(EVI1) \ge 10\%$ AML with other *MECOM* rearrangements[‡] \ge 10% AML with other rare recurring translocations (see supplemental Table 5) \geq 10% AML with t(9;22)(q34.1;q11.2)/BCR::ABL1[§] \geq 20% AML with mutated NPM1 \geq 10% AML with in-frame bZIP CEBPA mutations $\geq 10\%$ AML and MDS/AML with mutated TP53⁺ 10-19% (MDS/AML) and \geq 20% (AML) AML and MDS/AML with myelodysplasia-related gene mutations 10-19% (MDS/AML) and \geq 20% (AML) Defined by mutations in ASXL1, BCOR, EZH2, RUNX1, SF3B1,

SRSF2, STAG2, U2AF1, or ZRSR2

AML with myelodysplasia-related cytogenetic abnormalities 10-19% (MDS/AML) and \geq 20% (AML)

Defined by detecting a complex karyotype (\geq 3 unrelated clonal chromosomal abnormalities in the absence of other class-defining recurring genetic abnormalities), del(5q)/t(5q)/add(5q), -7/del(7q), +8, del(12p)/t(12p)/add(12p), i(17q), -17/add(17p) or del(17p), del(20q), and/or idic(X)(q13) clonal abnormalities

AML not otherwise specified (NOS) 10-19% (MDS/AML) and \geq 20% (AML)

WHO Classification, 5th edition

 Table 7.
 Acute myeloid leukaemia.

Acute myeloid leukaemia with defining genetic abnormalitiesAcute promyelocytic leukaemia with PML::RARA fusionAcute myeloid leukaemia with RUNX1::RUNX1T1 fusionAcute myeloid leukaemia with CBFB::MYH11 fusionAcute myeloid leukaemia with DEK::NUP214 fusionAcute myeloid leukaemia with RBM15::MRTFA fusionAcute myeloid leukaemia with BCR::ABL1 fusionAcute myeloid leukaemia with MECOM rearrangementAcute myeloid leukaemia with NUP98 rearrangementAcute myeloid leukaemia with OCEBPA mutationAcute myeloid leukaemia with CEBPA mutationAcute myeloid leukaemia with OCEBPA mutationAcute myeloid leukaemia with OCEBPA mutationAcute myeloid leukaemia with OCEBPA mutation

How can we detect all the genetic changes at diagnosis?

Optical Genome Mapping Fingerprinting chromosome segments

Image from MDACC website: <u>https://www.mdanderson.org/research/research-resources/core-facilities/advanced-technology-genomics-core/services-and-fees/bionano-optical-genome-mapping.html</u>

Optical Genome Mapping

Yael Michaeli, Yuval Ebenstein. Channeling DNA for optical mapping. Nat Biotechnol. 2012 Aug;30(8):762-3. doi: 10.1038/nbt.2324.

OGM: Technical Workflow

Genome Med. 2017;9(1):90. PMID: 29070057

Comput Struct Biotechnol J. 2020;18:2051. PMID: 32802277

Mapping Structural Variations

Comput Struct Biotechnol J. 2020;18:2051. PMID: 32802277

Comprehensive Genomic Methods

Technique	CG	FISH	СМА	OGM	Targeted	Exome	WGS	RNA-seq
Viable cells	Yes	No	No	No	No	No	No	No
Resolution	~5 Mb	100-200 kb	20-100 kb	5-50 kb	1 bp	1 bp	1 bp	1 bp
Coverage	Genome	Targeted	Genome	Genome	Targeted	Exome	Genome	Genome, Targeted
Alterations	CNV, SV	CNV, SV	CNV, LOH	CNV, SV	\leftarrow SNV, Indel, CNV, SV, LOH \rightarrow			Gene expression, SV
Sensitivity (VAF)	5%-10%	1%-5%	30%	5%	2%	5%-10%	10%	5%
TAT (days)∗	2-21	1-3	3-14	4-7	5-14	5-14	3-14	5-14

Clinically significant chromosomal aberrations in MDS detected by OGM

Yang, H, et al. Leukemia 2022;36:2306–2316. PMID: 35915143

OGM Summary

- Requires ultra-long genomic fragments (limited use for FFPE tissue)
- Single platform for high-throughput at a high resolution
- Single-molecule, no processing bias
- Genome-wide detection of all the types of SVs (CNVs, balanced and unbalanced structural variants)
- Genomic information that is otherwise inaccessible using sequencing, as low as 1% VAF
- Better resolution and better turnaround time than traditional karyotyping

Polymerase Chain Reaction (PCR)

- End-point PCR
 - Detecting PCR products at the end of reaction
 - Useful to reveal fragment sizes
 - Can be multiplexed if product sizes are different
 - Usually needs to open the PCR tube and run the product with electrophoresis
 - Risk of contaminating the lab space
 - Not a quantitative method
- Real-time PCR
 - Detecting amount of amplicon real-time by reporter signal
 - Closed tube process, no risk of amplicon contamination
 - Easily quantitative
 - Multiplex by different fluorescence colors on the products
 - Cannot see the fragment sizes of products

Technologies qPCR (Examples)

www.roche-mb.com/lightcycler.htm

 Polymerization: A flucrescent reporter (R) dye and a quencher (Q) are attached to the 5' and 3' ends of a TaqMan[®] probe, respectively.

Strand displacement: When the probe is intact, the reporter dye emission is quenched.

 Cleavage: During each extension cycle, the DNA polymerase cleaves the reporter dye from the probe.

 Polymerization completed: Once separated from the quencher, the reporter dye emits its characteristic fluorescence.

http://www3.appliedbiosystems.com/AB_Home/applicationstechnologies/Real -timePCR/TaqManvsSYBRGreenChemistries/index.htm?newGlobalNav=true

qPCR: Cycle Threshold and Quantitation

The cycle threshold converts to template concentration using a standard cure.

PRINCIPLE OF DIGITAL PCR

PCR REACTIONS THAT ARE DIGITALIZED

https://www.xboxlab.se/files/Produkter/whatisdigitalpcr.pdf

PRINCIPLE OF DIGITAL PCR

SAMPLE DISTRIBUTION

Distribution

- a. Separation type
- b. Droplet type

a. Separation type

b. Droplet type

Oil →

← Oil

https://www.xboxlab.se/files/Produkter/whatisdigitalpcr.pdf

MEASURING TARGET CONCENTRATION

EVEN VS. RANDOM DISTRIBUTION

Positive well

Negative well

37 wells with 0 molecule 63 wells with ≥1 molecules Poisson calculated 99 molecules 95%Cl 77 to 129 molecules

100 molecules

100 wells

https://www.xboxlab.se/files/Produkter/whatisdigitalpcr.pdf

ddPCR based cfDNA mutation detection

A Incubate PAA beads with PCR mix

^B Emulsify beads on vortexer

^C Thermal cycle emulsions

Demaree et al. Methods in Cell Biology 2018; 148:119-131

Error Corrected NGS

Next Generation/2nd Generation/Paralell Sequencing

Modified from: Dahl F et al. PNAS 2007;104:9387-9392

TCAG AGCTTTGCTAACGGTCGAG CTCCCTGCTTCTGTC... TCAG AGCTTTGCTAACGGTCGAG AGCTAGGTT%TCCTC... TCAG AGCTTTGCTAACGGTCGAG CGGTCTGAAAGCGTT...

Sequencing Depth and Variant Frequency Estimation

With only 100× coverage (panel A), there is considerable overlap between 5% and 1% VAF, inhibiting the ability to confidently call low-frequency variants below 5%. In contrast, variants below 5% frequency can be reliably called when coverage depth is increased to > 500× coverage (panel B).

Sequencing depth and detection sensitivity

Shin H. et al. Nat Commun. 2017; 8: 1377

Noise of conventional NGS (Specificity)

Routine NGS has an error rate of 0.5 ~ 2.0%

UMI Duplex Error Corrected NGS

Michael W. Schmitt et al. PNAS 2012;109:14508-14513

©2012 by National Academy of Sciences

Frequently asked questions in practice

- How do you choose between different molecular and genetic tests?
- What is the utility of mutation results in diagnosing myeloid neoplasms (especially MDS, MPN and MDS/MPN)?
- How do I decide when to order clonality tests?
- How is a positive clonality result helping my diagnosis of lymphoma?
- Do you have an NGS mutation profiling test for lymphomas, and how helpful is it in your practice?

Blood (2022) 140 (21): 2228–2247

Technique	CG	FISH	СМА	OGM	Targeted	Exome	WGS	RNA-seq
Viable cells	Yes	No	No	No	No	No	No	No
Resolution	~5 Mb	100-200 kb	20-100 kb	5-50 kb	1 bp	1 bp	1 bp	1 bp
Coverage	Genome	Targeted	Genome	Genome	Targeted	Exome	Genome	Genome, Targeted
Alterations	CNV, SV	CNV, SV	CNV, LOH	CNV, SV	\leftarrow SNV, Indel, CNV, SV, LOH \rightarrow			Gene expression, SV
Sensitivity (VAF)	5%-10%	1%-5%	30%	5%	2%	5%-10%	10%	5%
TAT (days)∗	2-21	1-3	3-14	4-7	5-14	5-14	3-14	5-14

In adult AML, FISH rarely provides additional information when karyotyping is adequate (20 or more metaphases were analyzed).

R. He, et al. Am J Clin Pathol 2015;143(6):873-8. PMID: 25972330

FISH vs. PCR

Blood (2022) 140 (21): 2228-2247

Technique	CG	FISH	СМА	OGM	Targeted	Exome	WGS	RNA-seq
Viable cells	Yes	No	No	No	No	No	No	No
Resolution	~5 Mb	100-200 kb	20-100 kb	5-50 kb	1 bp	1 bp	1 bp	1 bp
Coverage	Genome	Targeted	Genome	Genome	Targeted	Exome	Genome	Genome, Targeted
Alterations	CNV, SV	CNV, SV	CNV, LOH	CNV, SV	\leftarrow SNV, Indel,	, CNV, SV, LOH $ ightarrow$		Gene expression, SV
Sensitivity (VAF)	5%-10%	1%-5%	30%	5%	2%	5%-10%	10%	5%
TAT (days)∗	2-21	1-3	3-14	4-7	5-14	5-14	3-14	5-14

When there is no fusion RNA product, FISH is clinically more sensitive than PCR for the diagnosis of hematolymphoid neoplasms.

- *PML::RARA*: both FISH and PCR are good for quick TAT test;
- *BCR::ABL1*: Always start with FISH test!
- Lymphoma fusions: FISH almost always better than PCR.

Cytopenia and MDS

Differential Diagnosis of Cytopenia(s)

Mutation accumulates with increased age

Total cases tested: 46,706 aged 40-70

Niroula A. et al. Nat Med. 2021 Nov;27(11):1921-1927. PMID: 34663986

Mutation accumulates with increased age

WHO-HAEM5 Blue Book Online

Yoshizato T. et al. N Engl J Med 2015;373:35-47. PMID: 26132940; only top 15 are shown

Mutation pattern is predictive of evolving to MDS

Malcovati, L. et al. Blood. 2017;129:3371-3378

CCUS: All mutations are not Equal

Mutations have high specificity for myeloid neoplasm with myelodysplasia:

- Spliceosome genes: SF3B1, ZRSR2, SRSF2, U2AF1 and JAK2 (excluding PMF)
- Co-mutation patterns involving TET2, ASXL1, or DNMT3A: RUNX1, EZH2, CBL, BCOR, CUX1, TP53, or IDH1/IDH2

Malcovati, L. et al. Blood. 2017;129:3371-3378
OS of patients with CCUS and highly specific mutation pattern and of patients with myeloid neoplasm with myelodysplasia Malcovati, L. et al. Blood. 2017;129:3371

Diagnostic performance of targeted NGS for cytopenias

TABLE 2 Diagnostic performance of mutations for MDS with different cutoffs. The sensitivity, specificity, positive predictive value and negative predictive value with different VAF cutoffs and number of mutations for MDS in different NGS panels

	Any mutations (VAF ≥ 1%)	VAF ≥ 20%	≥2 mutations	VAF ≥ 10% and ≥2 mutations
640 gene panel				
Sensitivity	98.3%	81.7%	84.3%	68.7%
Specificity	47.6%	95.3%	65.1%	95.3%
NPV	95.3%	79.6%	75.7%	69.5%
PPV	71.5%	95.9%	76.3%	95.2%
41 gene panel				
Sensitivity	95.7%	75.7%	69.6%	53.0%
Specificity	72.1%	100%	91.9%	100%
NPV	92.4%	75.4%	69.3%	61.4%
PPV	81.5%	100%	91.9%	100%

Abbreviations: NPV: negative predictive value; PPV: positive predictive value.

Risk of developing myeloid neoplasms: Groups

Risk of developing myeloid neoplasms: Genes

Time to progression univariate regression analysis for samples non-diagnostic of MDS

Variable	HR (95% CI)	p-value
ASXL1	11.22 (6.34-19.87)	p<0.0001
BCOR	20.11 (8.04-50.3)	p<0.0001
DNMT3A	1.3 (0.52-3.23)	p=0.5706
IDH1	12.91 (5.19-32.11)	p<0.0001
RUNXI	19 (9.4-38.39)	p<0.0001
SRSF2	11.89 (7.38-19.16)	p<0.0001
TET2	8.43 (5.31-13.4)	p<0.0001
U2AF1	7.75 (3.85-15.6)	p<0.0001
ZRSR2	6.57 (2.84-15.16)	p<0.0001

Figure 4: Time-to-progression analysis in non-diagnostic patients according to number of mutations

Proposed minimal diagnostic criteria of MDS

Oncotarget. 2017;8(43):73483. PMID: 29088721

A. Prerequisite Criteria (both must be fulfilled)

1. Persistent (4 months) peripheral blood cytopenia in one or more of the following lineages: Eythroid cells, neutrophils, platelets

Exception: In the presence of a blast cell excess and MDS-related cytogenetic abnormalities the diagnosis of MDS can be established without delay

2. Exclusion of all other hematopoietic or non-hematopoietic disorders as primary reason for cytopenia/dysplasia

B. MDS-Related (Major) Criteria (at least one must be fulfilled)

- 1. Dysplasia in at least 10% of all cells in one of the following lineages in the bone marrow smear: erythroid; neutrophilic; megakaryocytic
- 2. ≥15% ring sideroblasts (iron stain)

or ≥5% ring sideroblasts (iron stain) in the presence of SF3B1 mutation

- 3. 5-19% myeloblasts on bone marrow smears (or 2-19% myeloblasts on blood smears)
- 4. Typical chromosome abnormality(ies) by conventional karyotyping or FISH

C. Co-Criteria

For patients fulfilling A but not B, and otherwise show typical clinical features, e.g. macrocytic transfusion-dependent anemia; two or more of these co-criteria must be fulfilled for considering a provisional diagnosis of MDS)

- 1. Abnormal findings in histologic and/or immunohistochemical studies of bone marrow biopsy sections supporting the diagnosis of MDS (ALIP, CD34+ clusters, micromegakaryocytes, etc.)
- 2. Abnormal immunophenotype of bone marrow cells by flow cytometry, with multiple MDS-associated phenotypic aberrancies indicating the presence of a monoclonal population of erythroid and/or myeloid cells
- 3. Evidence of a clonal population of myeloid cells determined by molecular (sequencing) studies revealing MDS-related mutations

Mutations in cytopenic patients without definitive evidence of MDS

- Single mutation
- Low variant allele frequency (<10%)
- Mutation in common ARCH genes
- Mild cytopenias

- Multiple mutations
- Higher variant allele frequency (>20%)
- Mutation in genes more commonly associated with MDS
- Cytopenia, especially progressive

Malcovati, L. et al. Blood. 2017;129:3371-3378

Modified from Steensma D. Hematology: ASH Education Program 2016 AMP 2016 presentation

AML Novel Molecular Targeting Therapies

	FLT3 inhibitors (midostaurin, quizartinib, gilteritinib, crenolanib)
Protein kinase inhibitors	KIT inhibitors
	PI3K/AKT/mTOR inhibitors
	Aurora and polo-like kinase inhibitors, CDK4/6 inhibitors, CHK1,
	WEE1, and MPS1 inhibitors
	SRC and HCK inhibitors
	HDAC inhibitors; New DNA methyltransferase inhibitors (SGI-110)
Enigonatic modulators	IDH1 and IDH2 inhibitors
cpigenetic modulators	DOT1L inhibitors
	BET-bromodomain inhibitors
Mitochondrial inhibitors	Bcl-2, Bcl-xL, and Mcl-1 inhibitors; Caseinolytic protease inhibitors
Therapies targeting	Fusion transcripts targeting
oncogenic proteins	EVI1; NPM1; Hedgehog (Glasdegib)
Targeting environment	CXCR4 and CXCL12 antagonists; Antiangiogenic therapies

NGS-based Mutation Profile of AML

N Engl J Med 2018; 378(13):1189-1199. PMID: 29601269

Molecular Assessment of Residual Disease in AML

B Allele Frequency of Mutations Detected during Complete Remission

Molecular Residual Disease and Clinical Outcome

Sensitive NGS MRD is better than MFC

Dillon Haematologica, 2024 Feb 1;109(2):401-410. PMID: 37534515

Methods for detection of MRD in AML

		Applicable %				
Status	Method	Target	Sensitivity /	AML	TRT(d)	Limitations/problems
		Leukemia-associated				
		immunophenotype (LAIP) or				Less sensitive, more
Established	MFC	different from normal (DfN)	$10^{-3} \simeq 10^{-4}$	85-90	2	subjective analysis
		Robust data:				
		NPM1, CBFB::MYH11, RUNX1::				
		RUNX1T1				
		Less validated:				
		KMT2A::MLLT3, DEK::NUP214,				
Established	RT-qPCR	BCR::ABL1, WT1	10 ⁻⁴ ~ 10 ⁻⁵	40-50	3-5	Limited applicability
		Potentially any somatic				Less sensitive, costly,
Exploratory	NGS	mutation	10 ⁻² ~ 10 ⁻⁴	~100	5-10	technically challenging
Exploratory	dPCR	Specific targeted mutations	10 ⁻³ ~ 10 ⁻⁴	~70	3-5	Specific assay necessary for every mutation, limited sensitivity

Modified from: Blood. 2022;140(12):1345-1377. PMID: 35797463

NGS MRD Testing for AML: Targets

- Specific mutations identified at diagnosis *vs* agnostic panel approaches both can be considered.
- Mutations in signaling pathway genes (*FLT3-ITD, FLT3-TKD, KIT*, and *RAS*, among others)
 - Likely represent residual AML when detected.
 - They are often subclonal and have a low negative predictive value.
 - These mutations are best used in combination with additional MRD markers.
- Molecular marker that is targeted (FLT3 inhibitors and IDH1/IDH2 inhibitors) should be included.
- Emerging variants not found at diagnosis should be reported only if confidently detected above background noise.
- Considering all detected mutations as potential MRD markers, exclude:
 - Germline mutations (ANKRD26, CEBPA, DDX41, ETV6, GATA2, RUNX1, and TP53)
 - Mutations in DNMT3A, TET2, and ASXL1 (DTA).

Molecular MRD Testing for AML: Methods

- LOD of 10⁻³ or lower: qPCR, dPCR, or error-corrected NGS using UMIs is recommended.
- 5 mL of BM aspirate from the first pull.
- Leukemia-specific PCR assays (eg, for NPM1, PML::RARA, or CBF AML).
- There is no uniform bioinformatics pipeline/platform for NGS-MRD variant calling.
- Potential cross-sample sequence contamination
 - Never run a high positive sample with MRD sample
 - Contamination by pooling samples should be bioinformatically evaluated.

Molecular MRD Testing for AML: Technical Recommendations

- PCR recommendations:
 - Sufficient template input (100ng DNA, 1µg total RNA, or RT volume corresponding to 100 ng of RNA)
 - For ddPCR:
 - number of total copies > 32,000
 - total droplet count > 15,000
 - empty droplets > 100
 - Duplicate or triplicate
 - >40 cycles; Ct ≤40 cycles
 - Determine LLOD and LOB
- NGS and bioinformatics recommendations
 - Error correction NGS: ≥10,000 read families and >10 mutant reads
 - Non-error-corrected NGS: ≥60,000 reads and >60 mutant reads

Chinese American Pathologists Association (CAPA) 10th Annual Diagnostic Course

Saturday, October 19th, and Sunday, October 20th, 2024. Las Vegas

Meeting site: Plaza hotel and Casino, 1 Main Street, Las Vegas, Nevada, 89101 💙

This Diagnostic Course does **NOT** Provide Virtual Option.

Hotel reservation open on 5/15/2024: Visit CAPA Official Website to get information.

Reserved hotel rooms are very limited and may not be the best price. We recommend you search around the meeting site \checkmark to find the hotel best fit your need.

Grand Canyon West Tour with Hoover Dam Stop and Optional Skywalk (Monday, 10/21/2024, from 6 AM to 6 PM):

Luggage is **NOT ALLOWED** for Hoover Dam Stop. Therefore, if you need to leave Las Vegas Monday night after the tour (*returning flights after 9:30 PM can be considered*), check out hotel, ask the hotel Bell Desk to hold your luggage until you come back from the tour. More information about the tour pending.

- Concurrent session #2: Hematopathology / Pediatric pathology / Dermatopathology. Moderator: Dr. Di Jing
- 1:00 1:25 PM Eosinophilia: What are the Causes? By Dr. Yan Liu. Loma Linda University Health
- 1:25 1:50 PM Somatic UBA1 Mutation Predispose Male Patient to Low Grade MDS. By Dr. Peng Li. University of Utah
- 1:50 2:00 PM Break
- 2:00 2:25 PM Nodular Lymphocyte Predominant Hodgkin Lymphoma in Children. Dr. Dehua Wang. Rady Children's Hospital UCSD
- 2:25 2:50 PM Diagnosis of CTCL: Challenge and Tips. By Dr. Jing Zhang. Carolinas Dermatology and Plastic Surgery

3:00 PM Group photos

Poster Session (Chair: Dr. Xiaoying Liu):

Recent and valuable posters, regardless of whether they were previously presented at other conferences or not, will be considered for the poster session (limited space available).

Dinner Party at Rio KJ Dim Sum & Seafood

10/20/2024 Sunday (Las Vegas Local Time)

- Concurrent session #3: Anatomic Pathology. Moderator: Dr. Haodong Xu
- 8:00 -8:25 Hepatobiliary pathology:
 - 1. Defining Atypical Hepatocellular Adenoma: an Existing Or Arbitrary Entity At the Transition of Benign Versus Malignant Hepatocellular Neoplasm. By *Dr. Lee-Ching Zhu*. University of North Carolina at Chapel Hill
 - 2. What's New in Cholangiocarcinoma: Unveiling a Versatile Liver Lump. By Dr. Xiaotang Du. UCLA department of pathology and lab medicine
- 8:25 8:50 WHO Reporting System for Pancreaticobiliary Cytopathology: Review, Application, and Ancillary Testing. By Dr. Qun Wang. Emory University School of Medicine
- 8:50 9:00 Break
- 9:00 9:25 Undifferentiated Small Round Cell Sarcomas. By Dr. Shaoxiong Chen. Indiana University
- 9:25 9:50 Cervical Lesions: Is It a Carcinoma? By Dr. Yanjun Hou. Wake Forest University
- Concurrent session #4: Clinical Pathology, Molecular Genetic Pathology and Digital Pathology. Moderator: Dr. Linsheng Zhang
- 8:00 -8:25 Molecular Pathology Updates on Solid Tumors. By Dr. Wei Zhang. University of Kansas Medical Center.
- 8:25 8:50 Enhancing Cytology Practice: Integrating AI and Recent ASC Guidelines for Precision Diagnosis. By Dr. Xiaoying Liu. Dartmouth Hitchcock Medical Center.
- 8:50 9:00 Break
- 9:00 9:25 Achieving Success in the MolDx: The Molecular Hematopathology Perspective. By Dr. Yi Ding. Geisinger Medical Center
- 9:25 9:50 Clinical Applications of Liquid Biopsy for Cancer: Challenges and Opportunities. By Dr. Gang Zheng. Mayo Clinic
- General session #2 Moderator: Dr. Y. Helen Zhang
- 10:00 10:30 Methylation Profile in CNS Tumor Diagnostics. By Dr. Liam Chen. University of Minnesota
- 10:30 11:00 Ancillary Studies and Artificial Intelligence: Are They Useful in Urine Cytology? By Dr. Juan Xing. Cleveland Clinic
- 11:15 AM End of meeting

Visit <u>https://tinyurl.com/capa10d</u> for more information.

Molecular Diagnostics of Lymphoid Neoplasms

- Proof of clonality
- Supporting lineage determination
- Relatedness of lymphomas
 - Different sites: are they from the same clone?
 - Progression/relapse
- Diagnosis, Prognosis, and Subclassification
 - Disease specific/characteristic translocation/mutation
 - Subclassification by mutation profiling
 - Patient specific clonal marker and MRD detection
- Targeting therapy and resistance prediction

Evidence of Clonality

- Flow cytometry or IHC
 - Ig light chain for B cells/plasma cells
 - V β for T cells
- Fusion genes or other specific mutations
 - FISH
 - PCR
- TCR/IGH clonal rearrangement
 - Southern blot
 - PCR

– NGS

Clonality Test by T/B Cell Receptor Gene Rearrangement

- Lineage infidelity
 - Clonality can support but not prove lineage
 - Clonal rearrangements of TCR genes can be found in B-cell neoplasms and vice versa
- PCR based tests have analytic sensitivity (~5%), not optimal for MRD

Clonality assessment

- Arbitrary definition of a positive peak (amplicon)
- Clonality judgment is subjective
- Clonality ≠ Malignancy
 - Pseudoclonality
 - Infection/inflammation (predominant clones)
- Not all clones will be detected by any technique
 - Somatic hypermutation
 - Poor DNA quality (perform amplification control)
 - Sampling artifact

BIOMED-2 PCR Testing for B/T Cell Lymphomas

- 107 different primers in 18 multiplex PCR tubes
- B cell
 - VH–JH 3
 - DH–JH 2
 - Ig kappa (*IGK*) 2
 - Ig lambda (*IGL*)
- T cell
 - TCR beta (*TCRB*)3
 - TCR gamma (*TCRG*) 2
 - TCR delta (*TCRD*)1
- Fusion genes
 - BCL1-lg heavy chain (IGH) 3
 - BCL2-IGH
- Clonality assessment by heteroduplex analysis or GeneScanning.

1

1

Common Patterns of IGH/TCR

IGH FR1

TCRB, tube A

Complementarity of Ig targets for clonality detection

Table from: Leukemia 2007; 21: 201

IGH				IGK	IGH+IGK
	VH–JH	DH–JH	VH–JH+DH–JH	Vк–Jк+Kde	
MCL(%)	100	11	100	100	100
B-CLL(%)	100	43	100	100	100
FL(%)	84	19	86	84	100
MZL(%)	88	51	95	83	100
DLBCL(%)	79	30	85	80	98
TOTAL(%)	88	28	91	88	99

IGH/IGK clonality studies reported sensitivity 42-79% (FF) and 9-94% (FFPE) in HL (CHL & NLPHL) Specificity studies on IGH/IGK are limited. False positive Ig/TCR clonality estimated approximately 10%

Figure 4-15 Immunobiology, 6/e. (© Garland Science 2005)

TRG V1 (BIOMED2) vs. V2

Quality Control for FFPE Specimen

Sensitivity and Specificity Issues

Case #: 96 IGH (pos 32, neg 64); 119 TCRG/B (pos 38, neg 71)

Kokovic, I et al. Radiol Oncol 2014; 48(2): 155-162.

T-cell clones of uncertain significance (Flow cytometry study)

Shi, M. et al. Modern Pathology (2020) 33:2046-2057

T-cell clones of uncertain significance

 Table 2
 Monoclonal Results for TCRG/TCRB Genes in Different Groups of Patients

Patient Group	<i>TCRG</i> , n (%)	TCRB Dβ-Jβ, n (%)	<i>TCRB Vβ-Jβ</i> , n (%)	<i>TCRB Dβ-Jβ/ Vβ-Jβ</i> , n (%)	<i>TCRG</i> and/or <i>TCRB</i> , n (%)
T-LGL $lphaeta$ (n = 30)	25 (83.3)	17 (56.7)	29 (96.7)	30 (100)	30 (100)
T-LGL $\gamma\delta$ (n = 12)	11 (91.7)	5 (41.7)	4 (33.3)	7 (58.3)	11 (91.7)
Healthy (n = 62)	7 (11.3)	3 (4.8)	0 (0)	3 (4.8)	9 (14.5)
RA/SLE (n $=$ 14)	3 (21.4)	2 (14.3)	0 (0)	2 (14.3)	5 (35.7)
Reactive CD8+ lymphocytosis $(n = 17)$	3 (17.6)	2 (11.8)	0 (0)	2 (11.8)	5 (29.4)
Total control group $(n = 93)$	13 (14)	7 (7.5)	0 (0)	7 (7.5)	19 (20.4)

Abbreviations: RA = rheumatoid arthritis; SLE = systemic lupus erythematosus; T-LGL leukemia = T-cell large granular lymphocytic leukemia.

Sidorova YV et al. Clinical Lymphoma, Myeloma & Leukemia. 2020; 20:203-8

T-cell clonality test: S/S and PPV

Table 3Sensitivity, Specificity, and Positive Predictive Value
of T-cell Clonality Testing for Differential Diagnosis in
 $\alpha\beta$ -T-LGL Leukemia

Method	Sensitivity, %	Specificity, %	Positive Predictive Value, %
TCRG	83.3	86	85.4
TCRB ($D\beta$ -J β)	56.7	92.5	83.7
TCRB (Vβ-Jβ)	96.7	100	99.2
<i>TCRB</i> (<i>Dβ-Jβ</i> and/or <i>Vβ-Jβ</i>)	100	92.5	94.3
Both <i>TCRG</i> + <i>TCRB</i>	83.3	98.9	95.1

Abbreviation: T-LGL leukemia = T-cell large granular lymphocytic leukemia.

- Clonal peaks present only in CD8+CD57+ cells
- Studied blood samples only
 - Vast majority of T-LGLL cases are α/β T-cells

TRG clonality test: Studies on CTCL

Only TRG rearrangement test was performed.

- Specificity: 97.7% (95%)
 CI 96.2–99.3%)
- Sensitivity 83.5% (78.3– 88.7%)
- PPV:95.% (92.1–98.5%)
- NPV: 91.5% (88.7–94.3%)
- diagnostic accuracy: 92.7% (95% CI 90.5– 94.8%).

T-cell clonality test: TCRG vs TCRB

Table 2.Correlation between TCRG and TCRB Test Results

	TCRG				
	Monoclonal	Polyclonal	Oligoclonal	Total	
<i>TCRB</i> Monoclonal Polyclonal Oligoclonal Total	43 21 2 66	22 107 0 129	1 0 6 7	66 128 8 202	

Concordance rate of *TCRG* and *TCRB* assays = (43 + 107 + 6)/202 = 77.2%.

Zhang, B. et al. JMD. 2010;12:320-327. PMID: 20203005
T-cell clonality test: S/S on CTCL

 Table 3.
 Test Results of *TCRG*, *TCRB*, and Combined Use of *TCRG* and *TCRB* When Interpreting Oligoclonality as Either

 Negative or Positive
 Zhang, B. et al. *JMD*. 2010;12:320-327. PMID: 20203005

Classification of oligoclonal pattern	Clonality test(s) used	Test interpretation	Definitions of "positive" and "negative"	# of MF	# of ID	Sensitivity	Specificity
As negative	TCRG alone	Positive	Monoclonal	44	22	64%	84%
0		Negative	Oligoclonal or polyclonal	25	111		
	TCRB alone	Positive	Monoclonal	44	22	64%	84%
		Negative	Oligoclonal or polyclonal	25	111		
	TCRG and TCRB	Positive	Both tests are monoclonal	34	9	49%	93%
		Negative	At least one test is not monoclonal	35	124		
	TCRG and TCRB	Positive	At least one test is monoclonal	54	35	78%	74%
		Negative	Neither test is monoclonal	15	98		
As positive	TCRG alone	Positive	Monoclonal or oligoclonal	51	22	74%	84%
		Negative	Polyclonal	18	111		
	TCRB alone	Positive	Monoclonal or oligoclonal	51	23	74%	83%
		Negative	Polyclonal	18	110		
	TCRG and TCRB	Positive	Both tests are monoclonal or oligoclonal	40	9	58%	93%
		Negative	At least one test is polyclonal	29	124		
	TCRG and TCRB	Positive	At least one test is monoclonal or oligoclonal	62	36	90%	73%
		Negative	Both tests are polyclonal	7	97		
		To	otal #	69	133		

T-cell clonality test: Algorithm from CTCL Study

Clonality Test by Next Generation Sequencing

- Amplify and sequence the v-j regions
- Detect clonal sequence by 1) % of total (>2.5%) and above background (e.g. >3x ~ 10x of the 3rd or 4th most abundant clonotype)
- Better analytic sensitivity and specificity
- Provide detail sequence information of the rearrangements
- Accurate information for clonal relation of different lesions
- Easily designed for MRD detection
 - Require diagnostic index sequence to compare the clonal rearrangement
 - Analytic precision dependent on sequencing read-depth, but limited by Poisson sampling and sequencing error
 - Clonal sequences may not be stable after therapy
- Bias introduced by PCR could be a major issue

Technical limitations and non-malignant causes of false-positive IG/TCR gene rearrangement results

Mendoza H. et al. Pathology. 2021; 53(2):157-165

Non-neoplastic causes of	T-cell neoplasms
positive IG gene rearrangement studies	Immunosuppression
	Autoimmunity
Non-neoplastic causes of	B-cell neoplasms
positive TCR gene	Viral infections
rearrangement staties	Benign reactive lesions
	Benign skin disorders
	Autoimmunityc causes of ene t studiesB-cell neoplasmsViral infectionsBenign reactive lesionsBenign reactive lesionsBenign skin disordersOligoclonal T-cell populations in elderlyRecovery from chemotherapy or stem cell transplantationations IG and TCR
positive IG gene rearrangement studies Non-neoplastic causes of positive TCR gene rearrangement studies Technical limitations affecting both IG and TCR gene rearrangement studies	Recovery from chemotherapy or stem cell transplantation
Technical limitations	Use of non-preferred fixatives
affecting both IG and TCR	tic causes of ene nt studies T-cell neoplasms Immunosuppression Autoimmunity B-cell neoplasms B-cell neoplasms Viral infections Benign reactive lesions Benign reactive lesions Benign reactive lesions Benign skin disorders Oligoclonal T-cell populations in elderly Recovery from chemotherapy or stem cell transplantation Use of non-preferred fixatives h IG and TCR gement studies H IG and TCR gement studies Small tissue samples Rare rearrangements not covered by available primer sets Small monoclonal populations outside of sensitivity of current tests Undersized and oversized PCR products
gene rearrangement staties	
	Undersized and oversized PCR products

Mutation Profiling for Lymphoma

CLL/SLL: Established Markers and Targets

- FISH or array test:
 - del 17p (*TP53*)
 - del 11q (ATM)
 - del 13q (miR-15a, miR-16-1)
 - trisomy 12

• Molecular test:

- IGHV Somatic hypermutation
- TP53 mutation
- NGS mutation profiling for targeting therapy and drug resistance:
 - BTK inhibitors: Ibrutinib, Acalabrutinib
 - PI3K inhibitors: Idelalisib, Duvelisib
 - BCL2 inhibitor: Venetoclax

Leukemia 2002; 16: 993

CLL/SLL: TP53 Mutations

Lee J & Wang YL. JMD. 2020;22(9):1114-1125

- Green circles: missense mutations; Black: truncating mutations; Brown, inframe mutations
- Frequency:
 - Del(17p): untreated ~6%, treated ~16%
 - Mutation: untreated: ~8%, treated 21%
- Functional consequences: inactivation, dominant negative effect
- Clinical significance: poor survival, poor response to chemotherapy

CLL/SLL: Emerging Markers

Lee J & Wang YL. JMD. 2020;22(9):1114-1125

CLL/SLL: Emerging Markers

		Time to Treatment	Overall Survival
TP53	Clonal	No impact	Shorter OS
	Subclonal	No impact	Shorter OS
SF3B1	Clonal	Shorter TTT	Trend for a shorter OS
	Subclonal	No impact	No impact
BIRC3	Clonal	No impact	Trend for a shorter OS
	Subclonal	No impact	No impact
NOTCH1	Clonal	Shorter TTT	Shorter OS
	Subclonal	Shorter TTT	No impact
ATM	Clonal	Shorter TTT	No impact
	Subclonal	*	*

CLL/SLL: Mutations Associated with Resistance

- **<u>BTKI resistance</u>**: *BTK* mutation (70%) and *PLCG2* mutation (10%) is considered major mechanism.
- Preexisting subclonal mutation is predictive of evolving into resistance and relapse.
- <u>Venetoclax resistance:</u> BCL2 G101V and D103Y, CDKN2A and BTG1 mutations, MCL1, PRKAB2 amplification.

Red color: associated with Richter transformation

Follicular Lymphoma: Mutation Profile

- *IGH::BCL2* rearrangement with overexpression of BCL2 is a typical molecular feature of follicular lymphoma.
- IGH::BCL2 negative FL:
 - Recurrent alterations of gene and/or 1p36, CREBBP, and EZH2
 - **Diffuse type, CD23+:** *STAT6* mutation and del or CNLOH 1p36.
 - **Pediatric type**; low genetic complexity with mutation in *TNFRSF14*
 - PCFCL: mutations more frequent in TNFAIP3; similar occurrences in TNFRSF14 or del1p36 deletions, less frequent in CREBBP, EP300, EZH2 KMT2D.
- EZH2 Activating mutation, CNV: resulting in aberrant methylation of histone H3 lysine 27 (H3K27m3) in 20–25% of FL.
 - H3K27 methylation: expression is a useful surrogate for EZH2 alteration
 - Overexpressed H3K27m3 in 89% of FL and 100% of PCFCL (independently of BCL2).
 - 95% of FH and 100% of PTFL cases lacked H3K27m3 overexpression.
 - H3K27m3 overexpression not specific for FL.

Molecular Genetic Findings in Pediatric FL

- 18 of 40 cases analyzed (45%) carried deletions (2 cases) or CNN-LOH (16 cases) of 1p36.32 including the *TNFRSF14*.
- 10 cases (24%) carried 1p36 alterations (9 cases with CNN-LOH and 1 case deletion) as the only genetic abnormality.

TNFRSF14 mutation in Pediatric FL

Mantle Cell Lymphoma: Mutation Prevalence

Mantle Cell Lymphoma: Genetic Clusters

Cluster 1 (n = 14)Cluster 2 (n = 8)Cluster 3 (n = 15) Cluster 4 (n = 7)Cluster IGHV mutated CCND1 Amp11q13 TRAF2 BIRC3 UBR5 VCAN LRP1B AMP15q AMP8q21 DEL11a22 Del1p21 ATM Del8p23 SMARCA4 RYR2 SP140 Amp13q NSD2 Amp3q Del6q25 KMT2D NOTCH1 KMT2C NOTCH2 Del17p13 Del13q14 Del9p21.3-q31.1 TP53 Amp12q13.13-14.1 Del15p13-q13.1 PCLO Del12p13 Low-level deletion Non-silent coding mutation Low-level amplification Genetic alterations High-level deletion High-level amplification

Validation cohort (n = 44)

в

100. Percent survival 60 20. P = 0.00120 60 40 80 OS (mo) No. at risk 14 8 6 3 14 8 7 7 з 2 12 10 5 3 15 2 1 C4 7 4 4

Validation cohort (n = 44)

С

J Clin Invest. 2022;132(3):e153283. PMID: 34882582

MCL: Mutations and Prognosis/Treatment Response

- <u>Unfavorable outcome</u>: Unmutated *IGHV*, complex karyotype, mutation in *TP53*, *ANK2*, *NOTCH1/2*, *BIRC3*, *CDKN2A* (deletion), *NSD2* (*WHSC1*), *CCND1*, and *MYC* overexpression
- <u>Poor response to ibrutinib:</u> *BIRC3* aberrations (mutation, deletion), *SWI/SNF* (*SMARCA4*)
- <u>Acquired ibrutinib resistance:</u> chromosomal complexity, *NSD2*, *NOTCH2*, *UBR5*, *BIRC3*, *TRAF2*, *MAP2K14*, *KMT2D*, *CARD11*, *SMARCA4*, and *BTK*. Activation of *PI3K/AKT* and the integrin-β1 signaling pathway.

Lymphoplasmacytic Lymphoma/WM

MYD88/CXCR4 Interactions

- MYD88 and CXCR4 are negatively correlated and expression levels are affected by mutation status.
- Overall MYD88 expression negatively correlates with WM bone marrow involvement. CXCR4 has a positive correlation.
- MYD88 mutant allele expression is often reduced versus the wild type allele in the mRNA whereas the mutant CXCR4 allele is preferentially expressed.

Hunter R. et al. Blood 2016;128: 827–838. PMID: 27301862

<u>MYD88^{wT}</u>

- Lowest levels of B-cell differentiation genes.
- Low NFkB Response genes Increased expression of genes associated with PIK3 signaling
- Increased promoter.
 methylation of *PRDM5* and *WNK2*.

All WM

- Up regulated VDJ Genes: DNTT, RAG1, RAG2
- Role for WT CXCR4: Increased CXCL12, CXCR4, VCAM1
- Decreased BAX expression
- High levels of *BCL2 CXCL13* expression correlates with BM involvement and Hemoglobin
- CXCR4^{wT}

 Highest levels of IGF1.
- Highest expression of B-cell differentiation genes.

MYD88L265P

- Associated with a transcriptional profile that is the most distinct from HD samples and other WM genotypes.
- High levels of PMAIP1.

Potential Targets

- All WM Patients
 - CXCR4 (both WT & WHIM)
 - CXCL13
 - BCL2 and BCL2L1
- IGF1/IGF1R, particularly in MYD88^{L265P}CXCR4^{WT}
- Hypomethylating agents in *MYD88^{wr}* patients
- PIK3 delta inhibitors, particularly in MYD88^{WT} WM. Additional inhibition of PIK3 gamma may be necessary for CXCR4^{WHM} patients

WHIM:

Warts, Hypogammaglobulinemia, Infections, Myelokathexis

CXCR4 mutation (40% of LPL): Associated with symptomatic hyperviscosity and resistance to ibrutinib therapy.

MYD88^{L265P} CXCR4^{WHIM}

- Silencing of tumor suppressors up regulated by MYD88 mutations.
- High IRAK3 and low TLR4 Expression.
- Decreased G-protein and MAPK signaling negative regulators.
 - High *PIK3R5* and *PIK3CG* levels.

Etiology and recurrent genetic abnormalities: Extranodal MZL

DDx of Small B-cell Lymphomas CD5 & CD10-negative, *BCL2*-R–negative

- Favor FL:
 - ✓ del1p36, *BCL6* rearrangement
 - ✓ Mutation in CREBBP, EZH2, TNFRSF14, STAT6
 - ✓ (PCFCL) *TNFAIP3*
- Favor MZL:
 - ✓ Characteristic translocations involving MALT1, FOXP1, and BCL10;
 - ✓ Mutations in KLF2, NOTCH2, PTPRD, CARD11, IRF8, or MAP2K1
- Favor LPL: *MYD88* and *CXCR4*
- HCL: BRAF mutation (V600E)

Blood 2022;140:2193 PMID: 36001803

Complexity of Genetic Abnormalities in DLBCL

- **Cluster 0:** No defining genetic drivers. THRLBCL, probably low tumor percentage
- Cluster 1: low-risk ABC, possibly MZL origin. BCL6 SVs with mutations of NOTCH2 pathway; NF-kB pathway, BCL10, TNFAIP3 and FAS. MYD88 non-L265P
- **Cluster 2**: an ABC/GCB independent group, biallelic inactivation of *TP53*, and loss of *CDKN2A*, *RB1*, associated genomic instability.
- Cluster 3: high-risk GCB DLBCLs with BCL2::IGH, inactivating mutations and/or copy loss of PTEN and mutations in chromatin modifiers, KMT2D, CREBBP and EZH2, B-cell TFs and BCR signaling. Also includes DH/TH LBCL
- **Cluster 4**: low-risk GCB DLBCLs with alterations in multiple histone genes, *JAK/STAT, BRAF, STAT3*, and *RHOA*
- Cluster 5: high-risk ABC DLBCLs, BCL2 copy gain, MYD88 L265P, CD79B mutations, and extra-nodal tropism

Mutations non-syn. syn. no SCNAs high-level gain low-level gain high-level loss low-level loss no SVs yes no

DLBCL genetic subtypes: comparison of equivalent subtypes

LymphGen	Modified HMRN	Harvard	Main Genetic Alterations	C00	Clinical Outcome	Related Lymphoma
MCD	MYD88	C5	MYD88 ^{L265P} , CD79B, PIM1, ETV6, CDKN2A	ABC	Poor	Primary CNS lymphoma, Primary testis lymphoma
EZB	BCL2	C3	BCL2-R, EZH2, CREBBP,	GCB	Good	Follicular lymphoma
EZB-MYC+	BCL2-MYC		rardMain Genetic AlterationsCOO5MYD88L265P, CD79B, PIM1, ETV6, CDKN2AABC3BCL2-R, EZH2, CREBBP, KMT2D, TNFRSF14GCB1BCL6-R, NOTCH2, BCL10, SPEN, CD70, TNFAIP3ABC, GCB, UC4TET2, SGK1, KLHL6, BRAFGCB3OOANOTCH1, ID3ABC2TP53, aneuploidyMixed	Poor	Double hit lymphoma	
BN2	BN2 NOTCH2	C1	BCL6-R, NOTCH2, BCL10, SPEN, CD70, TNFAIP3	ABC, GCB, UC	Intermediate	Marginal zone lymphoma
ST2	TET2/SGK1	C4	TET2, SGK1, KLHL6, BRAF	GCB	Good	Nodular lymphocyte predominant Hodgkin lymphoma
512	SOCS1/SGK1	04	SOCS1, SGK1, CD83, NFKBIA, NFKBIE, STAT3	GCB	Very good	Primary mediastinal B cell lymphoma
Other	NEC	CO				
N1	Modified HMRNICDMYD88ICDMYD88ICDBCL2ICDBCL2-MYCIN2NOTCH2IN2ITET2/SGK1ICDSOCS1/SGK1IN1NOTCH1IN3NOTCH1	NA	NOTCH1, ID3	ABC	Poor	Chronic lymphocytic leukaemia
A53	NA	C2	TP53, aneuploidy	Mixed	Intermediate	

Mod Pathol. Jan 2023;36(1):100007. PMID: 36788062

Genetic subgroups of DLBCL: LymphGen Algorithm

Algorithm for the diagnostic work-up of aggressive B-cell lymphomas

WHO 5th ed. Leukemia. 2022 Jun 22;1-29. PMID: 35732829

 TABLE 2
 Mutations associated with nodal follicular helper T cell lymphomas.

Genes		Frequency		
	AITL	nTFH-NOS	nTFH-FL	Front Uncol. 2023;13:1105651. PIVIID: 36793612
GTPase				
RHOA ^{G17V}	50-70	25-50	60	• G17V specific to AITL/PTCL-TFH
				• Not associated with prognosis
Epigenetic regulato	ors			
TET2	40-80	50-75	75	• Found in other neoplasms (myeloid)
DNMT3A	20-30	7-18	25	• TET2 co-occur w/ DNMT3 and IDH2 mutations is specific to TFH lymphomas
IDH2 ^{R172}	20-45	0	0	 <i>IDH2</i> mutations mostly restricted to AITL Presence of clear cells More pronounced TFH signature Strong CD10 and CXCL13 expression Chr 5 and 21 gains More aberrant genome than IDH2 negative cases Clinical trial: enasidenib
TCR signaling path	way			
ΡLCγ	8-14	6.25	N/A	• Not specific (PTCL-NOS)
CD28	10-12	0	N/A	• Worse prognosis in AILT

Multistep model of pathogenesis TFH-derived TCL

Megan Lim. AMP 2018 Presentation. Modified from Koeffler HP and Leong G. Leukemia 2017; 31: 534

Implications of Epigenetic Gene Mutations

- Helpful for the DDx of TFH lymphoma vs. other PTCL
- Background CHIP interferes with interpretation
- Clonal relationship with concurrent or secondary myeloid neoplasms
- Potential therapeutic targets

HDACi: TFHL vs PTCL, Multicentr, Phase 2

Table 3. Response to oral azacytidine and romidepsin across study populations

Response	All patients (n = 23)	Treatment-naïve patients (n = 10)	R/R disease (n = 13)	tTFH phenotype (n = 15)	Other subtypes (n = 8)
Overall response	14 (61)	7 (70)	7 (54)	12 (80)	2 (25)
Complete response	10 (43)	5 (50)	5 (38)	9 (60)	1 (12.5)
Partial response	4 (17)	2 (20)	2 (15)	3 (20)	1 (12.5)
Stable disease	5 (22)	2 (20)	3 (23)	2 (13)	3 (37.5)
Progressive disease	4 (17)	1 (10)	3 (23)	1 (7)	3 (37.5)
Not evaluable	2	2	0	2	0

Falchi L. et al. Blood. 2021;137(16):2161-2170. PMID: 33171487

JAK-STAT Pathway Mutations in Mature TCL

- ALCL, ALK-negative: activation of STAT3
- **TPLL**: *TCL1A*-R or *MTCP1*-R
 - Mutually exclusive mutations affecting *IL2RG, JAK1, JAK3*, or *STAT5B*
- GI Lymphomas:
 - EATL: JAK1 and STAT3 mutation more common
 - MEITL: SETD2, GNAI2, JAK3, and STAT5B mutations more common
 - STAT3::JAK2 fusions in indolent CD4+ T-cell lymphoproliferative disorder of the gastrointestinal tract: 4/5 cases
- Hepatosplenic T-cell lymphoma: i7q, +8
 - Mutations in SETD2, INO80, PIK3CD, TET3, SMARCA2 and STAT5B or STAT3.
- T-LGLL:
 - Gain of function mutations in STAT3 and STAT5B
 - *STAT3* mutation in CD8+ T-LGLL: associated with neutropenia and poorer overall survival.
 - *STAT5B* has no prognostic impact in CD4+ T-LGLL and gamma/delta T-LGLL.

Recurrent genetic lesions in mature NK- and T-cell neoplasms with potential therapeutic intervention

10	NK AND T-CELL NEOPLASMS	GENETIC LESIONS	Mechanism	POTENTIAL THERAPEUTIC INTERVENTION	
8	TFHL, PTCL NOS, CTCL, ATLL	CD28 FYN CARD11 PLCG1 RHOA mutations	TCR signaling activation	PI3K inhibitors (duvelisib, copanlisib), mTOR inhibitors (everolimus, temsirolimus), TKI (dasatinib), ITK inhibitor (CPI-818) (a,c)	
8	TFHL, CTCL, ATLL	CD28 fusions	Increased CD28 signaling	CTLA4 blockade (ipilimumab) (CTLA4::CD28) (b, c)	
3.	TFHL, PTCL NOS	FYN::TRAF3IP2	NF-kappaB activation	IkB kinase inhibitors (c)	TCR TCR
	TFHL	ITK::SYK	SYK and JAK3/STAT5 activation	JAK3 inhibitor (tofacitinib), dual SYK and JAK inhibitor (cerdulatinib) (c)	
	ALK- ALCL, PTCL NOS, ATLL	VAV1 fusions	VAV1 and RAC1 activation	RAC1 inhibitor (azathioprine) (c)	
	T-LGLL, NK-LGLL, T-PLL, MEITL, EATL, HSTL, ENKTCL, ALK- ALCL, BIA-ALCL, PTCL NOS	JAK1 JAK2 JAK3 STAT3 STAT5B SOCS1 mutations	STAT3 phosphorylation	JAK inhibitors (ruxolitinib, tofacitinib, gandotinib, momelotinib), dual SYK and JAK inhibitor	
180	ALK- ALCL, BIA-ALCL, CD30+ PTCL NOS, ITLPD-GI	JAK2 fusions	STAT5 phosphorylation	(cerdulatinib) (a, c)	AT
	ALK+ ALCL	ALK fusions	STAT3 phosphorylation	ALK inhibitors (crizotinib, alectinib) (a)	(/ST
~	ALK- ALCL	FRK fusions	STAT3 phosphorylation	Kinase inhibitor (dasatinib) (c)	I AL
1	PTCL NOS, TFHL-F	ITK::FER	STAT3 phosphorylation	JAK3 inhibitor (tofacitinib), kinase inhibitors (c)	
8	ALK- ALCL	ROS1 fusions	STAT3 phosphorylation	ROS1 inhibitor (JNJ-ROS1i-A) (c)	
	ALK- ALCL	TYK2 fusions	STAT1 phosphorylation	JAK inhibitors, TYK2 inhibitor (deucravacitinib) (c)	
0	TFHL, PTCL NOS, CTCL, ATLL	TET2 DNMT3A IDH2 mutations	DNA hypermethylation Oncometabolite production (IDH2 ^{R172})	Hypomethylating agents (5-azacytidine, decitabine), histone deacetylase inhibitors (romidepsin, belinostat, chidamide, vorinostat); IDH2 inhibitors (enasidenib) (a, b)	igenetics
	MEITL, HSTL	SETD2 mutations deletions	Loss of H3K36me3	Wee1 inhibitor (adavosertib) (c)	р Ш
1	ENKTCL, ATLL	CD274 CNA or SV	PD-L1 overexpression	Anti-PD1 antibodies (pembrolizumab, nivolumab) (b, c)	
50	ATLL	CCR4 mutations	Increased CCR4 expression	Anti-CCR4 antibody (mogamulizumab) (b)	ther
	ALK- ALCL	ERBB4 fusions or truncated transcripts	ERBB4 overexpression	Inhibitors of ERBB-family kinases (lapatinib) (c)	ō

Recurrently mutated genes in CHL

Total number of cases: 31; mutations seen in >3 cases are shown. Ultra-Deep Sequencing, not R-S cell sequencing

Cancer Res Commun. 2023;3(11):2312-2330. PMID: 37910143

ARAF	CARD11	CSF1R	FAS	JAK1	MYD88	PTEN	TNFAIP3
ARID1A	CCND1	CUL4A	FBXW7	JAK3	NOTCH1	RHOA	TNFRSF14
ARID1B	CCND3	CUL4B	FOX01	JUNB	NOTCH2	SF3B1	TP53
ATM	CCR4	CXCR4	FYN	KLF2	NRAS	SPEN	TRAF3
B2M	CD58	DDX3X	GNA13	KMT2D	NSD2	STAT3	VAV1
BCL2	CD79A	DIS3	ID3	KRAS	РІКЗСА	STAT5B	XBP1
BIRC3	CD79B	DNMT3A	IDH1	MAP2K1	PIM1	STAT6	XP01
BRAF	CDKN2A	EGFR	IDH2	MEF2B	PLCG1	TCF3	
BTG1	CRBN	EP300	IKZF1	MSC	PLCG2	TENT5C	
BTK	CREBBP	EZH2	IKZF3	МҮС	PRDM1	TET2	

Table 1 Genes Included in the NGS for Lymphoid Malignancies Panel

Highlighted genes not in TSO500 Missing SOCS1 (CHL)

Mayo Clinic Lymphoma NGS panel

J Mol Diagn 2024, 26: 583e598; https://doi.org/10.1016/j.jmoldx.2024.03.008

Liquid Biopsy (cfDNA test) for Lymphoma

- Advantages and encouraging findings
 - At initial diagnosis: helpful when
 - Lymphoma cells are few (CHL, THRLBC)
 - Location difficult to get biopsy (PCNSL CSF test; IVLBCL)

Follow up and MRD

- cfDNA mutation level may reflect tumor burden.
- NGS-based clonality test may be used to identify MRD
- EMR and CMR reported to be useful indicator of long term outcome in DLBCL, CHL
- Issues and controversies

– At diagnosis:

- No mutation profile is entirely specific;
- CHIP associated mutations frequently seen in old age patients
- Currently no standard guideline for clinical diagnosis/classification

Follow up and MRD

- Need more study on the clinical correlation of MRD
- Test techniques need to be standardized.

NGS for Lymphoma Mutation Profiling: Conclusions and Future Trends

- Mutational profiling enables a better understanding of the molecular pathobiology of lymphoma and refines the classification of lymphomas.
- Some genetic alterations are becoming classification markers or effective targets of novel treatment.
- Lymphoma profiling panels are evolving but will likely become popular soon.
- Liquid biopsy (cfDNA tests) may be a practical tool for challenging cases and post-treatment follow-up.

Most frequently mutated genes by entity

Myeloid neoplasms

MD	s	MDS/N	IPN-U	MPI	N	CM	L	aCM	/L	CMM	٨L	MLN	-eo	AM	L	s-AM	1L	t-AN	IL
SF3B1	31	ASXL1	60	JAK2	68	ASXL1	21	ASXL1	86	TET2	67	RUNX1	11	NPM1	23	SRSF2	44	KRAS	38
TET2	25	TET2	30	ASXL1	20			SRSF2	48	ASXL1	58	FANCL	6	DNMT3A	19	ASXL1	31	NRAS	13
ASXL1	18	CSF3R	30	TET2	18			TET2	34	SRSF2	46			TET2	19	SF3B1	31	CSF3R	13
SRSF2	13	SF3B1	20	CALR	11			SETBP1	34	NRAS	22			FLT3-ITD	16	RUNX1	31	TP53	6
DNMT3A	11	DNMT3A	20	SRSF2	10			EZH2	20	PTPN11	17			NRAS	14	TET2	25	RUNX1	6
TP53	11	JAK2	20	DNMT3A	6			RUNX1	18	SETBP1	17			ASXL1	14	NRAS	25	PTPN11	6
RUNX1	7	NRAS	20	U2AF1	5			NRAS	16	KRAS	13			SRSF2	12	IDH2	19	WT1	6
U2AF1	6	RUNX1	20					CUX1	10	RUNX1	13			TP53	11	FLT3	19	BCOR	6
ZRSR2	5	CEBPA	20					KRAS	8	EZH2	13			CEBPA	10	STAG2	13	KIT	6
STAG2	5	STAG2	20					STAG2	8	CBL	13			IDH2	9	TP53	13	ASXL2	6
		SRSF2	10					CBL	8	CUX1	13			RUNX1	9	DNMT3A	13	DIS3	6
		EZH2	10					GATA2	8	NF1	8			KRAS	8	JAK2	13	LRP1B	6
		BRAF	10					CSF3R	8					FLT3	8	KRAS	13	FAT4	6
		NF1	10					SF3B1	6					WT1	8	FLT3-ITD	13	SMC1A	6
		ATM	10					NF1	6					PTPN11	6	EZH2	13		
		SETBP1	10											IDH1	5	PTPN11	13		
		SH2B3	10											SF3B1	5	BCOR	13		
		GNAS	10											STAG2	5	GATA2	13		
		PRPF8	10											o n r o a		CUX1	13		
																NPM1	6		
																U2AF1	6		

Mixed myeloid/lymphoid

AU	L	MPA	L
SRSF2	46	TP53	33
TET2	38	DNMT3A	27
RUNX1	38	FLT3-ITD	17
ASXL1	29	NRAS	10
BCOR	25	RUNX1	10
DNMT3A	13	FLT3	10
KRAS	13	WT1	10
EZH2	13	NF1	7
STAG2	8	TET2	7
ZRSR2	8	KRAS	5
GATA2	8	STAG2	5

PHF6

7

Plasma cell neoplasms

MGL	JS	м	Л
NRAS	17	KRAS	26
KRAS	8	NRAS	21
TRAF3	8	DIS3	6
SUZ12	8	TP53	6

122 genes in 3096 cases of 28 hematological malignancies Blood Adv. 2021;5(21):4426-4434. PMID: 34570179

45-50%

>50%

Other

Lymphoid neoplasms

		ТАЦ		ТМ		NI	,	D NI		D.		011								1101		
B-AL	L	I-ALL		1-191		INI	`	D-INI		BL	-	CLL		FL		MCL	•	LP	L	HCL	HCL	v
TP53	17	NOTCH1	38	STAT3	52	STAT3	23	TP53	50	TP53	60	TP53	13	KMT2D	87	TP53	24	MYD88	98	BRAF 100	BIRC3	23
NRAS	10	PHF6	30	TET2	9	TET2	13	MYD88	17	MYC	30	NOTCH1	12	CREBBP	73	ATM	18	CXCR4	51	ARID1A 7	TP53	12
KRAS	8	DNMT3A	13	DNMT3A	6	ASXL1	5	ARID1A	13	ID3	30	SF3B1	11	ARID1A	27	CCND1	18	ARID1A	20		TET2	9
KMT2D	5	WT1	12	PHF6	6	KRAS	5	CXCR4	13	KMT2D	20	MYD88	7	BCL2	13	WHSC1	12	DNMT3A	11		BCOR	9
PTPN11	5	RUNX1	11	LRP1B	6	PPM1D	5	BIRC3	10	CD79B	15	ATM	7	EZH2	11	DNMT3A	6	TET2	9		CXCR4	9
		BCOR	10	CTCF	6	FAS	5	DNMT3A	7	MYD88	10	BIRC3	5	TNFRSF14	11	KMT2D	6	TP53	9		ASXL1	7
		ASXL1	7	JAK1	6			KLF2	7	CREBBP	10			EP300	8	CREBBP	6	CD79B	5		DNMT3A	7
		IDH2	5							BCL2	10			TP53	6	NOTCH1	6				ARID1A	7
										FOXO1	10			CARD11	5	ETV6	6				ATM	7
										TBL1XR1	10			CD79A	5	BIRC3	6				MAP2K1	7
										ASXL1	5					DIS3	6				KRAS	5
										NRAS	5					RB1	6				BCORL1	5
										U2AF1	5					LRP1B	6				ZBTB7A	5
										BCOR	5					NFKBIE	6				NOTCH2	5
										ARID1A	5					NOTCH2	6					
										XPO1	5					FOXO1	6					
										RB1	5											
										CARD11	5											
										CDKN2A	5											
										KLHL6	5											

Acknowledgments

- My fellow hematopathologists in the Hematopathology Focus Interest Group
- CAPA Online Education Subcommittee and Hematopathology Subcommittee

The presentation file in PDF format is available for download on my personal webpage:

https://tinyurl.com/lszhang

Emory University

1.110

H H

111 111